
Large-scale Parallel Collaborative Filtering for

the Netflix Prize

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber and Rong Pan

HP Labs, 1501 Page Mill Rd, Palo Alto, CA, 94304
{yunhong.zhou, dennis.wilkinson, rob.schreiber, rong.pan}@hp.com

Abstract. Many recommendation systems suggest items to users by
utilizing the techniques of collaborative filtering (CF) based on histor-
ical records of items that the users have viewed, purchased, or rated.
Two major problems that most CF approaches have to resolve are scal-
ability and sparseness of the user profiles. In this paper, we describe
Alternating-Least-Squares with Weighted-λ-Regularization (ALS-WR), a
parallel algorithm that we designed for the Netflix Prize, a large-scale col-
laborative filtering challenge. We use parallel Matlab on a Linux cluster
as the experimental platform. We show empirically that the performance
of ALS-WR monotonically increases with both the number of features
and the number of ALS iterations. Our ALS-WR applied to the Net-
flix dataset with 1000 hidden features obtained a RMSE score of 0.8985,
which is one of the best results based on a pure method. Combined with
the parallel version of other known methods, we achieved a performance
improvement of 5.91% over Netflix’s own CineMatch recommendation
system. Our method is simple and scales well to very large datasets.

1 Introduction

Recommendation systems try to recommend items (movies, music, webpages,
products, etc) to interested potential customers, based on the information avail-
able. A successful recommendation system can significantly improve the revenue
of e-commerce companies or facilitate the interaction of users in online commu-
nities. Among recommendation systems, content-based approaches analyze the
content (e.g., texts, meta-data, features) of the items to identify related items,
while collaborative filtering uses the aggregated behavior/taste of a large num-
ber of users to suggest relevant items to specific users. Collaborative filtering is
popular and widely deployed in Internet companies like Amazon [16], Netflix [2],
Google News [7], and others.

The Netflix Prize is a large-scale data mining competition held by Netflix
for the best recommendation system algorithm for predicting user ratings on
movies, based on a training set of more than 100 million ratings given by over
480,000 users to nearly 18,000 movies. Each training data point consists of a
quadruple (user, movie, date, rating) where rating is an integer from 1 to 5. The
test dataset consists of 2.8 million data points with the ratings hidden. The goal
is to minimize the RMSE (root mean squared error) when predicting the ratings



on the test dataset. Netflix’s own recommendation system (CineMatch) scores
0.9514 on the test dataset, and the grand challenge is to improve it by 10%.

The Netflix problem presents a number of practical challenges. (Which is per-
haps why, as yet, the prize has not been won.) First, the size of the dataset is 100
times larger than previous benchmark datasets, resulting in much longer model
training time and much larger system memory requirements. Second, only about
1% of the user-movie matrix has been observed, with the majority of (potential)
ratings missing. This is, of course, an essential aspect of collaborative filetering
in general. Third, there is noise in both the training and test dataset, due to
human behavior – we cannot expect people to to be completely predictable, at
least where their feelings about ephemera like movies is concerned. Fourth, the
distribution of ratings per user in the training and test datasets are different, as
the training dataset spans many years (1995-2005) while the testing dataset was
drawn from recent ratings (year 2006). In particular, users with few ratings are
more prevalent in the test set. Intuitively, it is hard to predict the ratings of a
user who is sparsely represented in the training set.

In this paper, we introduce the problem in detail. Then we describe a paral-
lel algorithm, alternating-least-squares with weighted-λ-regularization. We use
parallel Matlab on a Linux cluster as the experimental platform, and our core
algorithm is parallelized and optimized to scale up well with large, sparse data.
When we apply the proposed method to the Netflix Prize problem, we achieve
a performance improvement of 5.91% over Netflix’s own CineMatch system.

The rest of the paper is organized as follows: in Section 2 we introduce the
problem formulation. In Section 3 we describe our novel parallel Alternative-
Least-Squares algorithm. Section 4 describes experiments that show the effec-
tiveness of our approach. Section 5 discusses related work and Section 6 concludes
with some future directions.

2 Problem Formulation

Let R = {rij}nu×nm
denote the user-movie matrix, where each element rij

represents the rating score of movie j rated by user i with its value either being
a real number or missing, nu designates the number of users, and nm indicates
the number of movies. In many recommendation systems the task is to estimate
some of the missing values in R based on the known values.

We start with a low-rank approximation of the user-item matrix R. This
approach models both users and movies by giving them coordinates in a low
dimensional feature space. Each user and each movie has a feature vector, and
each rating (known or unknown) of a movie by a user is modeled as the inner
product of the corresponding user and movie feature vectors. More specifically,
let U = [ui] be the user feature matrix, where ui ⊆ R

nf for all i = 1 . . . nu, and
let M = [mj] be the movie feature matrix, where mj ⊆ R

nf for all j = 1 . . . nm.
Here nf is the dimension of the feature space, that is, the number of hidden
variables in the model. It is a system parameter that can be determined by a
hold-out dataset or cross-validation. If user ratings were fully predictable and



nf sufficiently large, we could expect that rij = < ui,mj >, ∀ i, j. In practice,
however, we minimize a loss function (of U and M) to obtain the matrices U

and M . In this paper, we study the mean-square loss function. The loss due to
a single rating is defined as the squared error:

L2(r,u,m) = (r− < u,m >)2. (1)

Then we can define the empirical, total loss (for a given pair U and M) as
the summation of loss on all the known ratings in Eq. (2).

Lemp(R, U, M) =
1

n

∑

(i,j)∈I

L2(rij ,ui,mj), (2)

where I is the index set of the known ratings and n is the size of I.
We can formulate the low-rank approximation problem as follows.

(U, M) = arg min
(U,M)

Lemp(R, U, M). (3)

where U and M are real, have nf coulmns, but are otherwise unconstrained.
In this problem, (Eq. (3)), there are (nu + nm) × nf free parameters to be

determined. On the other hand, the known ratings set I has far fewer than
nunm elements, because it is impossible for all but a very few users to view and
rate 18,000 movies. 1 Solving the problem Eq. (3) with many parameters (when
nf is relatively large) from a sparse dataset usually overfits the data. To avoid
overfitting, a common method appends a Tikhonov regularization [22] term to
the empirical risk function (Eq. (4)).

Lreg
λ (R, U, M) = Lemp(R, U, M) + λ(‖UΓU‖

2 + ‖MΓM‖2), (4)

for a certain suitably selected Tikhonov matrices ΓU and ΓM . We will discuss
the details in the next section.

3 Our Approaches

In this section, we describe an iterative algorithm, Alternative-Least-Squares
with Weighted-λ-Regularization (ALS-WR), to solve the low rank approximation
problem. Then we develop a parallel implrmrntation of ALS-WR based on a
parallel Matlab platform.

3.1 ALS with Weighted-λ-Regularization

As the rating matrix contains both signals and noise, it is important to remove
noise and use the recovered signal to predict missing ratings. Singular Value

1 For instance, in the Netflix Prize problem, the number of known ratings is about
1.1% of all possible ratings.



Decomposition (SVD) is a natural approach that approximates the original user-
movie rating matrix R by the product of two rank-k matrices R̃ = UT ×M . The
solution given by the SVD minimizes the Frobenious norm of R − R̃, which is
equivalent to minimizing the RMSE over all elements of R. However, as there
are many missing elements in the rating matrix R, standard SVD algorithms
cannot find U and M .

In this paper, we use alternating least squares (ALS) to solve the low-rank
matrix factorization problem as follows:

Step 1 Initialize matrix M by assigning the average rating for that movie as
the first row, and small random numbers for the remaining entries.

Step 2 Fix M , Solve U by minimizing the objective function (the sum of
squared errors);

Step 3 Fix U , solve M by minimizing the objective function similarly;

Step 4 Repeat Steps 2 and 3 until a stopping criterion is satisfied.

The stopping criterion we use is based on the observed RMSE on the probe
dataset. After one round of updating both U and M , if the difference between
the observed RMSEs on the probe dataset is less than 1 bps 2, the iteration stops
and we use the obtained U, M to make final predictions on the test dataset. The
probe dataset is provided by Netflix, and it has the same distribution as the
hidden test dataset.

As we mention in Section 2, there are many free parameters. Without reg-
ularization, ALS might lead to overfitting. A common fix is to use Tikhonov
regularization, which penalizes large parameters. We tried various regulariza-
tion matrices, and eventually found the following weighted-λ-regularization to
work the best, as it never overfits the test data (empirically) when we increase
the number of features or number of iterations.

f(U, M) =
∑

(i,j)∈I

(rij − uT
i mj)

2 + λ





∑

i

nui
‖ui‖

2 +
∑

j

nmj
‖mj‖

2



 , (5)

where nui
and nmj

denote the number of ratings of user i and movie j respec-
tively. 3 Let Ii denote the set of movies j that user i rated, then nui

is the
cardinality of Ii; similarly Ij denotes the set of users who rated movie j, and
nmj

is the cardinality of Ij . This corresponds to Tikhonov regularization where
ΓU = diag(nui

) and ΓM = diag(nmj
).

Now we demonstrate how to solve the matrix U when M is given. A given
column of U , say ui, is determined by solving a regularized linear least squares
problem involving the known ratings of user i, and the feature vectors mj of the

2 1 bps equals 0.0001.
3 The same objective function was used previously by Salakhutdinov et al. [20] and

solved using gradient descent. We will discuss more on their approach in Section 5.2.



movies that user i has rated.

1

2

∂f

∂uki

= 0, ∀i, k

⇒
∑

j∈Ii

(uT
i mj − rij)mkj + λnui

uki = 0, ∀i, k

⇒
∑

j∈Ii

mkjm
T
j ui + λnui

uki =
∑

j∈Ii

mkjrij , ∀i, k

⇒
(

MIi
MT

Ii
+ λnui

E
)

ui = MIi
RT (i, Ii), ∀i

⇒ ui = A−1
i Vi, ∀i

where Ai = MIi
MT

Ii
+ λnui

E, Vi = MIi
RT (i, Ii), and E is the nf × nf identity

matrix. MIi
denotes the sub-matrix of M where columns j ∈ Ii are selected, and

R(i, Ii) is the row vector where columns j ∈ Ii of the i-th row of R is taken.
Similarly, when M is updated, we can compute individual mj’s via a regu-

larized linear least squares solution, using the feature vectors of users who rated
movie j, and their ratings of it, as follows:

mj = A−1
j Vj , ∀j,

where Aj = UIj
UT

Ij
+ λnmj

E and Vj = UIj
R(Ij , j). UIj

denotes the sub-matrix

of U where columns i ∈ Ij are selected, and R(Ij , j) is the column vector where
rows i ∈ Ij of the j-th column of R is taken.

3.2 Parallel ALS with Weighted-λ-Regularization

We parallelize ALS by parallelizing the updates of U and of M . We are using
the latest verstion of Matlab, which allows parallel Matlab computation in which
several separate copies of Matlab, each with its own private workspace, and each
running on its own hardware platform, collaborate and communicate to solve
problems. Each such running copy of Matlab is referred to as a “lab”, with its
own identifier (labindex) and with a static variable (numlabs) telling how many
labs there are. Matrices can be private (each lab has its own copy, and their values
differ), replicated (private, but with the same value on all labs) or distributed
(there is one matrix, but with rows, or columns, partitioned among the labs).
Distributed matrices are a convenient way to store and use very large datasets,
too large to be stored on one processor and its associated local memory. In our
case, we use two distributed copies of the ratings matrix R, one distributed
by rows (i.e., by users) and the other by columns (i.e., by movies). We will
compute distributed, updated matrices U and M . In computing U we will require
a replicated version of M , and vice versa. Thus, our labs communicate to make
replicated versions of U and of M from the distributed versions that are first
computed. Matlab’s “gather” function performns the inter-lab communication
needed for this.

To update M , we require a replicated copy of U , local to each lab. We use
the ratings data distributed by columns (movies). The distribution is by blocks



of equal numbers of movies. The lab that stores the ratings of movie j will, natu-
rally, be the one that updates the corresponding column of M , which is movie j’s
feature vector. Each lab computes mj for all movies in the corresponding movie
group, in parallel. These values are then “gathered” so that every node has all
of M , in a replicated array. To update U , similarly all users are partitioned into
equal-size user groups and each lab just update user vectors in the correspond-
ing user group, using the ratings data partitioned by rows. The following Matlab
snippet implements the procedure of updating M given U :

function M = updateM(lAcols, U)

lamI = lambda * eye(Nf);

lM = zeros(Nf,Nlm); lM = single(lM);

for m = 1:Nlm

users = find(lAcols(:,m));

Um = U(:, users);

vector = Um * full(lAcols(users, m));

matrix = Um * Um’ + locWtM(m) * lamI;

X = matrix \ vector;

lM(:, m) = X;

end

M = gather(darray(lM));

end

For the above Matlab code, lAcols is the local copy of R distributed by columns
(movies), locWtM is the vector of nmj

for all movies in the partitioned movie
group, and Nlm is the number of movies in the movie group. Nf and lambda
correspond to nf and λ, and they are the only tunable parameters of ALS-WR.

The broadcast step is the only communication cost due to using a distributed,
as opposed to a shared-memory, algorithm. For our method it takes up less than
5% of the total run time. The algorithm achieves a nearly linear speedup; for
nf = 100, it takes 2.5 hours to update M and U once with a single processor,
as opposed to 5 minutes with 30 processors). The converged solution (with 30
ALS iterations) can be computed, for 100 hidden factors, in 2.5 hours.

4 Performance for the Netflix Prize Problem

We run our experiment on a 30-processor Linux cluster of HP ProLiant DL380
G4 machines. All processors are Xeon 2.8GHz and every four processors share
6GB of RAM. For each fixed nf , we run between 10 to 25 rounds of ALS-WF
and stop when one round of U, M update improves by less than 1 bps the RMSE
score on the probe dataset. The optimal value of λ is determined by trial and



error. 4 The test RMSE is obtained by submission to the Netflix prize website5.
The true values of the test ratings are unknown to us; for model building and
parameter tuning, we exclude the probe dataset from the training dataset and
use it for testing. The probe dataset is a subset of the training dataset, provided
by Netflix, and it consists of 1,408,395 latest ratings in year 2006, while users
are sampled uniform random and at most 9 ratings are drawn for each user. The
test dataset is hidden by Netflix but the distribution of the test dataset is the
same as the distribution of the probe dataset.

4.1 Post-processing

For post-processing of the prediction results, we first apply a global bias correc-
tion technique over each prediction solution. Given a prediction P , if the mean of
P is not equal to the mean of the test dataset, we can shift all predicted values by
a fixed constant τ = mean(test)−mean(P ). The global bias correction technique
can be shown to strictly reduce RMSE. Another technique we use is to linearly
combine various predictors to obtain a better predictor. For example, given two
predictors P0 and P1, we can obtain a family of predictors Px = (1−x)P0 +xP1,
and use linear regression to find x∗ minimizing RMSE(Px). Therefore we obtain
Px∗ which is at least as good as P0 or P1.

4.2 Experimental Results for ALS

The most important discovery we made is that ALS-WR never overfits the data
if we either increase the number of iterations or the number of hidden features.
As Figure 1 shows, with fixed nf and λ, each iteration improves the RMSE score
of the probe dataset, and it converges after about 20 rounds. Different λ values
give different final score, and we normally need to try a small number of λ values
to get a good RMSE score. Figure 2 shows the performance of ALS-WR with
fixed λ value and varying number of hidden features (nf ranges from 2 to 20).
For each experiment, ALS-WR interations continue until the RMSE over the
probe dataset improves less than 1 bps. From the figure we can tell that the
RMSE monotonically decreases with larger nf , even though the improvement
diminishes gradually.

Next we conduct experiments with real submissions using large values of nf .
For ALS with simple λ regularization (Γu = Γm = E), we obtain a RMSE of
0.9184. For ALS with weighted-λ-regularization, we obtained a RMSE of 0.9114
with nf = 50, 0.9066 with nf = 150. With nf = 300 and global bias correction,
we obtain a RMSE of 0.9017; with nf = 400 and global bias correction, a score
of 0.9006 was obtained; with nf = 500 and global bias shift, a score of 0.9000

4 Empirically we found that for fixed nf , the convergence RMSE score is a convex
function of λ, and the optimal value of λ is monotone decreasing with respect to nf .
Based on these observations, we are able to find the best value of λ for each nf with
only 2-3 experiments.

5 See http://www.netflixprize.com/rules for the detailed rules of the competition.



5 10 15 20 25 30 35 40 45 50

0.935

0.94

0.945

0.95

0.955

0.96

0.965

Number of Iterations

R
M

S
E

 

 

λ=0.03
λ=0.04
λ=0.05
λ=0.06
λ=0.075
λ=0.065

Fig. 1. Comparisons of different λ values for ALS-WR with nf = 8. The best performer
with 25 rounds is λ = 0.065. For this fixed λ, after 50 rounds, the RMSE score still
improves but only less than 0.1 bps for each iteration afterwards.

2 4 6 8 10 12 14 16 18 20
0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

Number of hidden features (n
f
)

R
M

S
E

 

 

λ 0.03
λ 0.04
λ 0.05

Fig. 2. Performance of ALS-WR with fixed λ and varying nf .



was obtained. Ultimately, we experimented with nf = 1000 and obtained a
RMSE score of 0.8985. 6 Given that 6 bps improvement is obtained from 400 to
500 features, and assuming diminishing (equal-decrease) return with increasing
number of features, moving from 500 to 1000 features improves approximately
5 + 4 + 3 + 2 + 1 = 15 bps. Therefore, 0.8985 is likely the limit we can achieve
using ALS with Weighted-λ-Regularization. A RMSE score of 0.8985 translates
into a 5.56% improvement over Netflix’s CineMatch, and it represents one of the
top single-method performance according to our knowledge.

4.3 Other Methods and Linear Blending

We also implement parallel versions of two other popular collaborative filtering
techniques as described in this section. In each case, the speedup as compared
to a single-processor version is roughly a factor of n on a cluster of n processors.

The Restricted Boltzmann Machine (RBM) is a kind of neural network where
there are visible states and hidden states, and undirected edges connecting each
visible state to each hidden state. There are no connections among visible states
or among hidden states, thus the name “restricted.” RBM was previously demon-
strated to work well for the Netflix challenge [20]. We implemented RBM using
Matlab, and converted it to Pmode. For a model with 100 hidden units, it takes
about 1 hour for one iteration without Pmode; using Pmode with 30 labs, it
takes 3 minutes for one iteration.

The k-nearest neighbor (kNN) method is also popular for prediction. With a
properly defined distance metric, for each data point needed for prediction, the
weighted average of the ratings of its k closest neighbors is used to predict the
rating of this point. Since there are so many user-user pairs for us to handle in
reasonable time and space, we use a simplified approach with only movie-movie
similarities. Again, we parallelize kNN by partitioning users into user groups so
that each lab processes one user group.

For RBM itself, a score of 0.9181 is obtained. For kNN with k = 21 and a
good similarity function, a RMSE of 0.9270 is obtained. Linear blending of ALS
with kNN and RBM yields a RMSE of 0.8952 (ALS + kNN + RBM), and it
represents a 5.91% improvement over Netflix’s CineMatch system.

5 Related Work

There is a lot of academic and industrial work on recommendation systems, low-
rank matrix approximation, and the Netflix prize. In the following we briefly
discuss related work most relevant to ours.

6 The experiment with nf = l000 is technically challenging as U takes 2G memory
with single precision entries for each processor. We managed to run the procedure of
updateM in two batches, while in each batch only two processors for each server are
active and U is only replicated in these processors. This avoids memory thrashing
using the 6G shared memory for each server. And ALS-WR converges in 10 rounds
while each rounds takes 1.5 hours.



5.1 Recommendation Systems

Recommendation systems can be mainly categorized into content-based and col-
laborative filtering, and are well-studied in both academia and industry [16, 2, 7].
Content-based recommendation systems analyze the content (e.g., texts, meta-
data, features) of the item to identify related items, with exemplary systems
InfoFinder [12], NewsWeeder [14]. Collaborative Filtering uses aggregated be-
havior/taste of a large number of users to suggest relevant items to specific
users. Recommendations generated by CF are based solely on the user-user
and/or item-item similarities, with exemplary systems GroupLens [19] and Bell-
core Video Recommender [11]. Efforts to combine both content-based approach
and collaborative filtering include the Fab system [3] and unified probabilistic
framework [18].

5.2 The Netflix Prize Approaches

For the Netflix prize, Salakhutdinov et al. [20] used Restricted Boltzmann Ma-
chines (RBM), obtaining an RMSE score of slightly below 0.91. They also pre-
sented a low-rank approximation approach using gradient descent. Their low-
rank approximation obtained an RMSE score slightly above 0.91 using between
20-60 hidden features. 7 The objective function of their SVD approach is the
same as our ALS-WR, however we use alternating least squares instead of gra-
dient descent to solve the optimization problem, and we are able to use a much
large number of features (1000 vs 40) to obtain significant improvement in RMSE
score.

Among many other approaches to the Netflix problem, Bell et al. [5] proposed
a neighborhood-based technique which combines k-nearest-neighbor (kNN) and
low-rank approximation to obtain significantly better results compared to either
technique alone. Their team won the progress prize in October 2007, obtaining
an RMSE score on the qualifying dataset of 0.8712, improving the CineMatch
score by 8.5%. However, their solution [4] is a linear combination of 107 individ-
ual solutions, while multiple solutions are derived by variants of three classes of
solutions (ALS, RBM, and kNN). For ALS alone, their best result was obtained
using 128 hidden features with an RMSE score above 0.9000. For a compre-
hensive treatment of various approaches for the Netflix prize, see the individual
papers presented in KDD Cup & Workshop 2007 [21, 17, 15, 13, 23].

5.3 Low-Rank Approximation

When a fully specified matrix is to be approximated by a low-rank matrix fac-
torization, variants of singular value decomposition are used, for example in
information retrieval (where SVD techniques are known as latent semantic in-
dexing [9]). Other matrix factoring methods, for example nonnegative matrix
factorization and maximum margin matrix factorization have also been proposed
for the Netflix prize [23].

7 We obtained similar results and got 0.9114 with nf = 50.



For a partially specified matrix, the SVD is not applicable. To minimize the
sum of squared differences between the known elements and the corresponding
elements of the factored low rank matrix, ALS has proven to be an effective
approach. It provides non-orthogonal factors, unlike SVD. The SVD can be
computed one column at a time, whereas for the partially specified case, no such
recursive formulation holds. An advantage of ALS is its easy parallelization. Like
Lanczos for the sparse, fully specified case, ALS preserves the sparse structure
of the known matrix elements and is therefore storage-efficient.

6 Concluding Remarks

We introduced a simple parallel algorithm for large-scale collaborative filtering
which, in the case of the Netflix prize, performed as well as any single method
reported in the literature. Our algorithm is designed to be scalable to very large
datasets. Moderately better scores can be obtained by refining the RBM and
kNN implementation or using more complicated blending schemes. ALS-WR
in particular is able to achieve good results without using date or movie title
information. The fast runtime achieved through parallelization is a competitive
advantage for model building and parameter tuning in general. It will be inter-
esting to develop a theory to explain why ALS-WR never overfits the data.

As the world shifts into Internet computing and web applications, large-scale
data intensive computing becomes pervasive. Traditional single-machine, single-
thread computing is no longer viable, and there is a paradigm shift in computing
models. Parallel and/or distributed computing becomes an essential component
for any computing environment. Google, the leading Internet company, is build-
ing its own proprietary parallel/distributed computing infrastructure, based on
MapReduce [8], Google File System [10], Bigtable [6], etc. Most technology com-
panies do not have the capital and expertise to develop an in-house large-scale
parallel/distributed computing infrastructure, and prefer instead to use readily
available solutions to solve computing infrastructure problems. Hadoop [1] is
an open-source project sponsored by Yahoo!, which tries to replicate the Google
computing infrastructure with open-source development. We have found parallel
Matlab to be flexible and efficient, and very straightforward to program. Thus,
from our experience, it seems to be a strong candidate for widespread, easily
scalable parallel/distributed computing.

References

1. The Hadoop Project. http://lucene.apache.org/hadoop/.
2. Netflix CineMatch. http://www.netflix.com.
3. M. Balabanovi and Y. Shoham. Fab: content-based, collaborative recommendation.

Communications of the ACM, 40(3):66–72, 1997.
4. R. Bell, Y. Koren, and C. Volinsky. The bellkor solution to

the netflix prize. Netflix Prize Progress Award, October 2007.
http://www.netflixprize.com/assets/ProgressPrize2007 KorBell.pdf.



5. R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In P. Berkhin, R. Caruana, and
X. Wu, editors, KDD, pages 95–104. ACM, 2007.

6. F. Chang et al. Bigtable: A distributed storage system for structured data. In Proc.
of OSDI’06: 7th Symposium on Operating Systems Design and Implementation,
pages 205–218, Seattle, WA, USA, November 6-8 2006.

7. A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scal-
able online collaborative filtering. In Proc. of WWW’07: the 16th International
Conference on World Wide Web, pages 271–280, Banff, Alberta, Canada, 2007.

8. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In Proc of OSDI’04: Sixth Symposium on Operating System Design and Implemen-
tation, pages 137–150, San Francisco, CA, December 2004.

9. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41(6):391–407, 1999.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proc. of
SOSP’03: 19th ACM Symposium on Operating Systems Principles, pages 29–43,
Lake George, NY, October 2003.

11. W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proc. of CHI’95: Conference on Human
Factors in Computing Systems, Denver, May 1995.

12. B. Krulwich and C. Burkey. Learning user information interests through extrac-
tion of semantically significant phrases. In Proc the AAAI Spring Symposium on
Machine Learning in Information Access, Stanford, CA, March 1996.

13. M. Kurucz, A. A. Benczur, and K. Csalogany. Methods for large scale svd with
missing values. In Proc of KDD Cup and Workshop, 2007.

14. K. Lang. NewsWeeder: Learning to filter netnews. In Proc. the 12th International
Conference on Machine Learning, Tahoe City, CA, 1995.

15. Y. J. Lim and Y. W. Teh. Variational bayesian approach to movie rating prediction.
In Proc of KDD Cup and Workshop, 2007.

16. G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7:76–80, 2003.

17. A. Paterek. Improving regularized singular value decomposition for collaborative
filtering. In Proc of KDD Cup and Workshop, 2007.

18. A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for
unified collaborative and content-based recommendation in sp. In Proceedings of
the 17th Annual Conference on Uncertainty in Artificial Intelligence (UAI-01),
pages 437–44, San Francisco, CA, 2001. Morgan Kaufmann.

19. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open
architecture for collaborative filtering of netnews. In Proc. the ACM Conference
on Computer-Supported Cooperative Work, Chapel Hill, NC, 1994.

20. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted boltzmann machines
for collaborative filtering. In Z. Ghahramani, editor, ICML, volume 227 of ACM
International Conference Proceeding Series, pages 791–798. ACM, 2007.

21. G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the gravity recommendation
system. In Proc of KDD Cup and Workshop, 2007.

22. A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. John Wiley,
New York, 1977.

23. M. Wu. Collaborative filtering via ensembles of matrix factorizations. In Proc of
KDD Cup and Workshop, 2007.


