原创文章,转载请注明: 转载自慢慢的回味
本文链接地址: CycleGAN模型原理
CycleGAN模型原理
前面我们了解了好几种GAN,它们大致可分为:
随机生成模型的GAN,包括GAN,DCGAN,WGAN,WGAN-GP等;
带条件生成模型的GAN,包括CGAN,InfoGAN,ACGAN等。
它们都是监督学习模型,即生成网络都有一个目标样本集。
除了监督学习模型,还有一类非监督学习模型,比如CycleGAN。
CycleGAN如下图所示,它能在油画到相片互相生成;马到斑马互相生成;夏天到冬天季节相互变化。它们都不是要把当前域的样本拟合到另一个域。
即:
1 X域所有图片的共性:油画 -> Y域所有图片的共性:真实照片,当前主要特征画内容的线条保持不变;
2 X域所有图片的共性:马的纹理 -> Y域所有图片的共性:斑马纹理,当前马的轮廓不会变;
3 X域所有图片的共性:夏天风景 -> Y域所有图片的共性:冬天风景,当前的河流,树木轮廓都不会变。
怎么才能达到上面的要求呢?以马到斑马为例:
1 在X马的样本里面,我们能找到它的公共特性就是马那黄色填充的毛,在Y斑马的样本里面,公共特性就是那条纹的着色填充。如果要把X拟合成Y,把Y拟合成X,那么很容易想到用GAN既可以解决,即用最小化“原始GAN的损失”来达到。
2 但是在步骤1完成后,我们会发现,马变成斑马后再也不像以前那匹马了。对人来说,感受物体最主要的特征就是物体的轮廓,所以我们采用最小化“Cycle一致性损失”,即对于单一的当前样本来说,X转成Y,然后再转回来X1,必须保持轮廓大致不变,这样人就会觉得物体没有变化。但对于计算机来说,它能看到的主要特征是大面积的着色填充,在X转成Y,或者Y再转回来的的过程中,着色填充确实做到了X到Y,Y到X的拟合。这样步骤1和步骤2就完成了计算机和人的双重欺骗。
3 怎么还有步骤3呢?这是论文后来加上的。在油画到真实照片的转换中,或反之,我们不希望它们的转换对自身产生作用,即X转成X1,Y转成Y1,不希望转换做任何改变,直接返回就可以了。论文中用最小化“Identity映射损失”来达到。
综上所述,就是用大面积的着色来骗计算机,用对人眼敏感的轮廓来骗人。这个理论也可以用在CGAN训练MNIST上,高斯随机噪声加数字输入,数字可以看作轮廓,噪声里面隐含了计算机能看到的着色。
损失函数组成
根据上面的分析,整个CycleGAN的目标损失函数由3部分组成:
1 原始GAN的损失:X通过生成网络G生成Y,到鉴别网络DY的输出;Y通过生成网络F生成X,到鉴别网络DX的输出。
如代码中:
a X到Y的鉴别网络loss(dB_loss_fake),生成网络loss(g_AB_loss):
img_A -> g_AB(img_A) -> fake_B -> d_B(fake_B) -> valid_B : 输入img_A,输出valid_B,鉴别网络d_B目标fake,生成网络g_AB目标valid;
b 真实Y的鉴别网络loss(dB_loss_real):
img_B-> d_B(img_B) -> valid_B : 输入img_B,输出valid_B,鉴别网络d_B目标valid;
c Y到X的鉴别网络loss(dA_loss_fake),生成网络loss(g_BA_loss):
img_B -> g_BA(img_B) -> fake_A -> d_A(fake_A) -> valid_A : 输入img_B,输出valid_A,鉴别网络d_A目标fake,生成网络g_BA目标valid;
d 真实X的鉴别网络loss(dA_loss_real):
img_A-> d_A(img_A) -> valid_A : 输入img_A,输出valid_A,鉴别网络d_A目标valid。
2 Cycle一致性损失:X通过生成网络G生成Y,然后再通过生成网络F回到X1,X到X1的损失。网络的目标是保证这种损失尽量小,即能还原X。
如代码中:
a 生成网络loss(g_AB_BA_loss):
img_A -> g_AB(img_A) -> fake_B -> g_BA(fake_B) -> reconstr_A :输入img_A,输出reconstr_A,生成网络g_AB -> g_BA目标imgs_A;
b 生成网络loss(g_BA_AB_loss):
img_B -> g_BA(img_B) -> fake_A -> g_AB(fake_A) -> reconstr_B :输入img_B,输出reconstr_B,生成网络g_BA -> g_AB目标imgs_B。
3 Identity映射损失:X通过网络F生成X1,网络需要保证X到X1几乎没有改变,即X域到X域的转变不需要修改,最大保留X的特性。
如代码中:
a 生成网络loss(g_BA_Ident_loss):
img_A -> g_BA -> img_A_id :输入img_A,输出img_A_id,目标imgs_A;
b 生成网络loss(g_AB_Ident_loss):
img_B -> g_AB -> img_B_id :输入img_B,输出img_B_id,目标img_B。
综上,鉴别网络的loss为:dA_loss_real,dA_loss_fake,dB_loss_real,dB_loss_fake;生成网络的loss为:g_AB_loss,g_BA_loss,g_AB_BA_loss,g_BA_AB_loss,g_AB_Ident_loss,g_BA_Ident_loss。
# Translate images to the other domain fake_B = self.g_AB(img_A) fake_A = self.g_BA(img_B) # Translate images back to original domain reconstr_A = self.g_BA(fake_B) reconstr_B = self.g_AB(fake_A) # Identity mapping of images img_A_id = self.g_BA(img_A) img_B_id = self.g_AB(img_B) # For the combined model we will only train the generators self.d_A.trainable = False self.d_B.trainable = False # Discriminators determines validity of translated images valid_A = self.d_A(fake_A) valid_B = self.d_B(fake_B) # Combined model trains generators to fool discriminators self.combined = Model(inputs=[img_A, img_B], outputs=[ valid_A, valid_B, reconstr_A, reconstr_B, img_A_id, img_B_id ]) self.combined.compile(loss=['mse', 'mse', 'mae', 'mae', 'mae', 'mae'], loss_weights=[ 1, 1, self.lambda_cycle, self.lambda_cycle, self.lambda_id, self.lambda_id ], optimizer=optimizer) |
# ---------------------- # Train Discriminators # ---------------------- # Translate images to opposite domain fake_B = self.g_AB.predict(imgs_A) fake_A = self.g_BA.predict(imgs_B) # Train the discriminators (original images = real / translated = Fake) dA_loss_real = self.d_A.train_on_batch(imgs_A, valid) dA_loss_fake = self.d_A.train_on_batch(fake_A, fake) dA_loss = 0.5 * np.add(dA_loss_real, dA_loss_fake) dB_loss_real = self.d_B.train_on_batch(imgs_B, valid) dB_loss_fake = self.d_B.train_on_batch(fake_B, fake) dB_loss = 0.5 * np.add(dB_loss_real, dB_loss_fake) # Total disciminator loss d_loss = 0.5 * np.add(dA_loss, dB_loss) # ------------------ # Train Generators # ------------------ # Train the generators g_loss = self.combined.train_on_batch([imgs_A, imgs_B], [valid, valid, imgs_A, imgs_B, imgs_A, imgs_B]) |
CycleGAN的Keras实现
from __future__ import print_function, division import scipy from keras.datasets import mnist from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import datetime import matplotlib.pyplot as plt import sys from data_loader import DataLoader import numpy as np import os class CycleGAN(): def __init__(self): # Input shape self.img_rows = 128 self.img_cols = 128 self.channels = 3 self.img_shape = (self.img_rows, self.img_cols, self.channels) # Configure data loader self.dataset_name = 'summer2winter_yosemite' self.data_loader = DataLoader(dataset_name=self.dataset_name, img_res=(self.img_rows, self.img_cols)) # Calculate output shape of D (PatchGAN) patch = int(self.img_rows / 2**4) self.disc_patch = (patch, patch, 1) # Number of filters in the first layer of G and D self.gf = 32 self.df = 64 # Loss weights self.lambda_cycle = 10.0 # Cycle-consistency loss self.lambda_id = 0.1 * self.lambda_cycle # Identity loss optimizer = Adam(0.0002, 0.5) # Build and compile the discriminators self.d_A = self.build_discriminator() self.d_B = self.build_discriminator() self.d_A.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) self.d_B.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) #------------------------- # Construct Computational # Graph of Generators #------------------------- # Build the generators self.g_AB = self.build_generator() self.g_BA = self.build_generator() # Input images from both domains img_A = Input(shape=self.img_shape) img_B = Input(shape=self.img_shape) # Translate images to the other domain fake_B = self.g_AB(img_A) fake_A = self.g_BA(img_B) # Translate images back to original domain reconstr_A = self.g_BA(fake_B) reconstr_B = self.g_AB(fake_A) # Identity mapping of images img_A_id = self.g_BA(img_A) img_B_id = self.g_AB(img_B) # For the combined model we will only train the generators self.d_A.trainable = False self.d_B.trainable = False # Discriminators determines validity of translated images valid_A = self.d_A(fake_A) valid_B = self.d_B(fake_B) # Combined model trains generators to fool discriminators self.combined = Model(inputs=[img_A, img_B], outputs=[ valid_A, valid_B, reconstr_A, reconstr_B, img_A_id, img_B_id ]) self.combined.compile(loss=['mse', 'mse', 'mae', 'mae', 'mae', 'mae'], loss_weights=[ 1, 1, self.lambda_cycle, self.lambda_cycle, self.lambda_id, self.lambda_id ], optimizer=optimizer) def build_generator(self): """U-Net Generator""" def conv2d(layer_input, filters, f_size=4): """Layers used during downsampling""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) d = InstanceNormalization()(d) return d def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0): """Layers used during upsampling""" u = UpSampling2D(size=2)(layer_input) u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u) if dropout_rate: u = Dropout(dropout_rate)(u) u = InstanceNormalization()(u) u = Concatenate()([u, skip_input]) return u # Image input d0 = Input(shape=self.img_shape) # Downsampling d1 = conv2d(d0, self.gf) d2 = conv2d(d1, self.gf*2) d3 = conv2d(d2, self.gf*4) d4 = conv2d(d3, self.gf*8) # Upsampling u1 = deconv2d(d4, d3, self.gf*4) u2 = deconv2d(u1, d2, self.gf*2) u3 = deconv2d(u2, d1, self.gf) u4 = UpSampling2D(size=2)(u3) output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4) return Model(d0, output_img) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, normalization=True): """Discriminator layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if normalization: d = InstanceNormalization()(d) return d img = Input(shape=self.img_shape) d1 = d_layer(img, self.df, normalization=False) d2 = d_layer(d1, self.df*2) d3 = d_layer(d2, self.df*4) d4 = d_layer(d3, self.df*8) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return Model(img, validity) def train(self, epochs, batch_size=1, sample_interval=50): start_time = datetime.datetime.now() # Adversarial loss ground truths valid = np.ones((batch_size,) + self.disc_patch) fake = np.zeros((batch_size,) + self.disc_patch) for epoch in range(epochs): for batch_i, (imgs_A, imgs_B) in enumerate(self.data_loader.load_batch(batch_size)): # ---------------------- # Train Discriminators # ---------------------- # Translate images to opposite domain fake_B = self.g_AB.predict(imgs_A) fake_A = self.g_BA.predict(imgs_B) # Train the discriminators (original images = real / translated = Fake) dA_loss_real = self.d_A.train_on_batch(imgs_A, valid) dA_loss_fake = self.d_A.train_on_batch(fake_A, fake) dA_loss = 0.5 * np.add(dA_loss_real, dA_loss_fake) dB_loss_real = self.d_B.train_on_batch(imgs_B, valid) dB_loss_fake = self.d_B.train_on_batch(fake_B, fake) dB_loss = 0.5 * np.add(dB_loss_real, dB_loss_fake) # Total disciminator loss d_loss = 0.5 * np.add(dA_loss, dB_loss) # ------------------ # Train Generators # ------------------ # Train the generators g_loss = self.combined.train_on_batch([imgs_A, imgs_B], [valid, valid, imgs_A, imgs_B, imgs_A, imgs_B]) elapsed_time = datetime.datetime.now() - start_time # Plot the progress print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %3d%%] [G loss: %05f, adv: %05f, recon: %05f, id: %05f] time: %s " \ % ( epoch, epochs, batch_i, self.data_loader.n_batches, d_loss[0], 100*d_loss[1], g_loss[0], np.mean(g_loss[1:3]), np.mean(g_loss[3:5]), np.mean(g_loss[5:6]), elapsed_time)) # If at save interval => save generated image samples if batch_i % sample_interval == 0: self.sample_images(epoch, batch_i) def sample_images(self, epoch, batch_i): os.makedirs('images/%s' % self.dataset_name, exist_ok=True) r, c = 2, 3 imgs_A = self.data_loader.load_data(domain="A", batch_size=1, is_testing=True) imgs_B = self.data_loader.load_data(domain="B", batch_size=1, is_testing=True) # Demo (for GIF) #imgs_A = self.data_loader.load_img('datasets/apple2orange/testA/n07740461_1541.jpg') #imgs_B = self.data_loader.load_img('datasets/apple2orange/testB/n07749192_4241.jpg') # Translate images to the other domain fake_B = self.g_AB.predict(imgs_A) fake_A = self.g_BA.predict(imgs_B) # Translate back to original domain reconstr_A = self.g_BA.predict(fake_B) reconstr_B = self.g_AB.predict(fake_A) gen_imgs = np.concatenate([imgs_A, fake_B, reconstr_A, imgs_B, fake_A, reconstr_B]) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 titles = ['Original', 'Translated', 'Reconstructed'] fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt]) axs[i, j].set_title(titles[j]) axs[i,j].axis('off') cnt += 1 fig.savefig("images/%s/%d_%d.png" % (self.dataset_name, epoch, batch_i)) plt.close() if __name__ == '__main__': gan = CycleGAN() gan.train(epochs=200, batch_size=1, sample_interval=200) |
data_loader.py:
from glob import glob import numpy as np from PIL import Image class DataLoader(): def __init__(self, dataset_name, img_res=(128, 128)): self.dataset_name = dataset_name self.img_res = img_res def load_data(self, domain, batch_size=1, is_testing=False): data_type = "train%s" % domain if not is_testing else "test%s" % domain path = glob('E:\workspace49\CycleGAN-tensorflow/datasets/%s/%s/*' % (self.dataset_name, data_type)) batch_images = np.random.choice(path, size=batch_size) imgs = [] for img_path in batch_images: img = self.imread(img_path) if not is_testing: img = img.resize(self.img_res) if np.random.random() > 0.5: img = np.fliplr(img) else: img = img.resize(self.img_res) imgs.append(np.array(img)) imgs = np.array(imgs)/127.5 - 1. return imgs def load_batch(self, batch_size=1, is_testing=False): data_type = "train" if not is_testing else "val" path_A = glob('E:\workspace49\CycleGAN-tensorflow/datasets/%s/%sA/*' % (self.dataset_name, data_type)) path_B = glob('E:\workspace49\CycleGAN-tensorflow/datasets/%s/%sB/*' % (self.dataset_name, data_type)) self.n_batches = int(min(len(path_A), len(path_B)) / batch_size) total_samples = self.n_batches * batch_size # Sample n_batches * batch_size from each path list so that model sees all # samples from both domains path_A = np.random.choice(path_A, total_samples, replace=False) path_B = np.random.choice(path_B, total_samples, replace=False) for i in range(self.n_batches-1): batch_A = path_A[i*batch_size:(i+1)*batch_size] batch_B = path_B[i*batch_size:(i+1)*batch_size] imgs_A, imgs_B = [], [] for img_A, img_B in zip(batch_A, batch_B): img_A = self.imread(img_A) img_B = self.imread(img_B) img_A = img_A.resize(self.img_res) img_B = img_B.resize(self.img_res) if not is_testing and np.random.random() > 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) imgs_A.append(np.array(img_A)) imgs_B.append(np.array(img_B)) imgs_A = np.array(imgs_A)/127.5 - 1. imgs_B = np.array(imgs_B)/127.5 - 1. yield imgs_A, imgs_B def load_img(self, path): img = self.imread(path) img = img.resize(self.img_res) img = img/127.5 - 1. return img[np.newaxis, :, :, :] def imread(self, path): return Image.open(path) |
本作品采用知识共享署名 4.0 国际许可协议进行许可。