This article will explain how the RDD to be executed with comments on code.
The spark git version is: SHA-1: 8b325b17ecdf013b7a6edcb7ee3773546bd914df
1 Using a unit test for example
46
47
48
49
50
51
52
53
54
| class BroadcastSuite extends SparkFunSuite with LocalSparkContext {
test("Using TorrentBroadcast locally") {
sc = new SparkContext("local", "test")
val list = List[Int](1, 2, 3, 4)
val broadcast = sc.broadcast(list)
val results = sc.parallelize(1 to 2).map(x => (x, broadcast.value.sum))
assert(results.collect().toSet === Set((1, 10), (2, 10)))
} |
class BroadcastSuite extends SparkFunSuite with LocalSparkContext {
test("Using TorrentBroadcast locally") {
sc = new SparkContext("local", "test")
val list = List[Int](1, 2, 3, 4)
val broadcast = sc.broadcast(list)
val results = sc.parallelize(1 to 2).map(x => (x, broadcast.value.sum))
assert(results.collect().toSet === Set((1, 10), (2, 10)))
}
2 Broadcast the data
val broadcast = sc.broadcast(list)
def broadcast[T: ClassTag](value: T): Broadcast[T] = {
assertNotStopped()
require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
"Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
val callSite = getCallSite
logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
} |
val broadcast = sc.broadcast(list)
def broadcast[T: ClassTag](value: T): Broadcast[T] = {
assertNotStopped()
require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
"Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
val callSite = getCallSite
logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
}
BroadcastManager.scala
55
56
57
| def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean): Broadcast[T] = {
broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
} |
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean): Broadcast[T] = {
broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
}
TorrentBroadcastFactory.scala
override def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long): Broadcast[T] = {
new TorrentBroadcast[T](value_, id)
} |
override def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long): Broadcast[T] = {
new TorrentBroadcast[T](value_, id)
}
TorrentBroadcast.scala
//lazy keyword is good for here, transfer the data to block store
@transient private lazy val _value: T = readBroadcastBlock()
//read the data from block store
private val numBlocks: Int = writeBlocks(obj)
override protected def getValue() = {
_value
} |
//lazy keyword is good for here, transfer the data to block store
@transient private lazy val _value: T = readBroadcastBlock()
//read the data from block store
private val numBlocks: Int = writeBlocks(obj)
override protected def getValue() = {
_value
}
3 Create RDD
It will create two RDDs,first parallelize the data, then a map,
the map RDD will reference the function. They are not be executed immediately.
val results = sc.parallelize(1 to 2).map(x => (x, broadcast.value.sum))
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
} |
val results = sc.parallelize(1 to 2).map(x => (x, broadcast.value.sum))
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
4 Run RDD to get the result
results.collect()
//Here is the really area for RDD execute
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
} |
results.collect()
//Here is the really area for RDD execute
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
}
SparkContext.scala
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
| /**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark.
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
} |
/**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark.
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
DAGScheduler.scala
605
606
607
608
609
610
611
612
613
| def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties) |
def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
| def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
//......
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
//Post a JobSubmitted event to DAGSchedulerEventProcessLoop
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
} |
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
//......
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
//Post a JobSubmitted event to DAGSchedulerEventProcessLoop
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
| private[scheduler] class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler)
extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging {
private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer
/**
* The main event loop of the DAG scheduler.
*/
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
doOnReceive(event)
} finally {
timerContext.stop()
}
}
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties) |
private[scheduler] class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler)
extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging {
private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer
/**
* The main event loop of the DAG scheduler.
*/
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
doOnReceive(event)
} finally {
timerContext.stop()
}
}
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
Create a new final stage and sumbmit it
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
| private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
} |
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}
Submit all dependent stage, for each stage, submit all the missing tasks
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
| /** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
} |
/** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
1 serialize the tasks and broadcast them to block manager
2 notice the back-end(eg:LocalSchedulerBackend) to revive the offer
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
| /** Called when stage's parents are available and we can now do its task. */
private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear()
// First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
// Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties
//......
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId)
}
case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else { |
/** Called when stage's parents are available and we can now do its task. */
private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear()
// First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
// Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties
//......
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId)
}
case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
At here, the taskScheduler is LocalSchedulerBackend which have a LocalEndpoint object, which used for send or receive offer event.
LocalSchedulerBackend.scala
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
| /**
* Calls to [[LocalSchedulerBackend]] are all serialized through LocalEndpoint. Using an
* RpcEndpoint makes the calls on [[LocalSchedulerBackend]] asynchronous, which is necessary
* to prevent deadlock between [[LocalSchedulerBackend]] and the [[TaskSchedulerImpl]].
*/
private[spark] class LocalEndpoint(
override val rpcEnv: RpcEnv,
userClassPath: Seq[URL],
scheduler: TaskSchedulerImpl,
executorBackend: LocalSchedulerBackend,
private val totalCores: Int)
extends ThreadSafeRpcEndpoint with Logging {
override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
reviveOffers()
case StatusUpdate(taskId, state, serializedData) =>
scheduler.statusUpdate(taskId, state, serializedData)
if (TaskState.isFinished(state)) {
freeCores += scheduler.CPUS_PER_TASK
reviveOffers()
}
case KillTask(taskId, interruptThread) =>
executor.killTask(taskId, interruptThread)
} |
/**
* Calls to [[LocalSchedulerBackend]] are all serialized through LocalEndpoint. Using an
* RpcEndpoint makes the calls on [[LocalSchedulerBackend]] asynchronous, which is necessary
* to prevent deadlock between [[LocalSchedulerBackend]] and the [[TaskSchedulerImpl]].
*/
private[spark] class LocalEndpoint(
override val rpcEnv: RpcEnv,
userClassPath: Seq[URL],
scheduler: TaskSchedulerImpl,
executorBackend: LocalSchedulerBackend,
private val totalCores: Int)
extends ThreadSafeRpcEndpoint with Logging {
override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
reviveOffers()
case StatusUpdate(taskId, state, serializedData) =>
scheduler.statusUpdate(taskId, state, serializedData)
if (TaskState.isFinished(state)) {
freeCores += scheduler.CPUS_PER_TASK
reviveOffers()
}
case KillTask(taskId, interruptThread) =>
executor.killTask(taskId, interruptThread)
}
This method will get the offer resource from block manager, include task bytes.
Then, lunch the task. The task runner will de-serialize first, then execute the RDD.
Last, serialize the result and send back to client.
LocalSchedulerBackend.scala
83
84
85
86
87
88
89
90
91
|
def reviveOffers() {
val offers = IndexedSeq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
for (task <- scheduler.resourceOffers(offers).flatten) {
freeCores -= scheduler.CPUS_PER_TASK
executor.launchTask(executorBackend, taskId = task.taskId, attemptNumber = task.attemptNumber,
task.name, task.serializedTask)
}
} |
def reviveOffers() {
val offers = IndexedSeq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
for (task <- scheduler.resourceOffers(offers).flatten) {
freeCores -= scheduler.CPUS_PER_TASK
executor.launchTask(executorBackend, taskId = task.taskId, attemptNumber = task.attemptNumber,
task.name, task.serializedTask)
}
}
In class TaskRunner
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
| override def run(): Unit = {
val threadMXBean = ManagementFactory.getThreadMXBean
val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
Thread.currentThread.setContextClassLoader(replClassLoader)
val ser = env.closureSerializer.newInstance()
logInfo(s"Running $taskName (TID $taskId)")
execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
var taskStart: Long = 0
var taskStartCpu: Long = 0
startGCTime = computeTotalGcTime()
try {
val (taskFiles, taskJars, taskProps, taskBytes) =
Task.deserializeWithDependencies(serializedTask)
// Must be set before updateDependencies() is called, in case fetching dependencies
// requires access to properties contained within (e.g. for access control).
Executor.taskDeserializationProps.set(taskProps)
updateDependencies(taskFiles, taskJars)
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
task.localProperties = taskProps
task.setTaskMemoryManager(taskMemoryManager)
// If this task has been killed before we deserialized it, let's quit now. Otherwise,
// continue executing the task.
if (killed) {
// Throw an exception rather than returning, because returning within a try{} block
// causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
// exception will be caught by the catch block, leading to an incorrect ExceptionFailure
// for the task.
throw new TaskKilledException
}
logDebug("Task " + taskId + "'s epoch is " + task.epoch)
env.mapOutputTracker.updateEpoch(task.epoch)
// Run the actual task and measure its runtime.
taskStart = System.currentTimeMillis()
taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
var threwException = true
val value = try {
val res = task.run(
taskAttemptId = taskId,
attemptNumber = attemptNumber,
metricsSystem = env.metricsSystem)
threwException = false
res |
override def run(): Unit = {
val threadMXBean = ManagementFactory.getThreadMXBean
val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
Thread.currentThread.setContextClassLoader(replClassLoader)
val ser = env.closureSerializer.newInstance()
logInfo(s"Running $taskName (TID $taskId)")
execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
var taskStart: Long = 0
var taskStartCpu: Long = 0
startGCTime = computeTotalGcTime()
try {
val (taskFiles, taskJars, taskProps, taskBytes) =
Task.deserializeWithDependencies(serializedTask)
// Must be set before updateDependencies() is called, in case fetching dependencies
// requires access to properties contained within (e.g. for access control).
Executor.taskDeserializationProps.set(taskProps)
updateDependencies(taskFiles, taskJars)
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
task.localProperties = taskProps
task.setTaskMemoryManager(taskMemoryManager)
// If this task has been killed before we deserialized it, let's quit now. Otherwise,
// continue executing the task.
if (killed) {
// Throw an exception rather than returning, because returning within a try{} block
// causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
// exception will be caught by the catch block, leading to an incorrect ExceptionFailure
// for the task.
throw new TaskKilledException
}
logDebug("Task " + taskId + "'s epoch is " + task.epoch)
env.mapOutputTracker.updateEpoch(task.epoch)
// Run the actual task and measure its runtime.
taskStart = System.currentTimeMillis()
taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
var threwException = true
val value = try {
val res = task.run(
taskAttemptId = taskId,
attemptNumber = attemptNumber,
metricsSystem = env.metricsSystem)
threwException = false
res
In class ResultTask, deserialize the RDD and func to execute.
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
| override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
func(context, rdd.iterator(partition, context))
} |
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
func(context, rdd.iterator(partition, context))
}
本作品采用知识共享署名 4.0 国际许可协议进行许可。